1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
use crate::macros as pa_m;
use crate::types as pa_t;
use crate::util as pa_u;
/// Calculate approximate position of the sun for a local date and time.
///
/// ## Arguments
/// * `lct_hours` -- Local civil time, in hours.
/// * `lct_minutes` -- Local civil time, in minutes.
/// * `lct_seconds` -- Local civil time, in seconds.
/// * `local_day` -- Local date, day part.
/// * `local_month` -- Local date, month part.
/// * `local_year` -- Local date, year part.
/// * `is_daylight_saving` -- Is daylight savings in effect?
/// * `zone_correction` -- Time zone correction, in hours.
///
/// ## Returns
/// * `sun_ra_hour` -- Right Ascension of Sun, hour part
/// * `sun_ra_min` -- Right Ascension of Sun, minutes part
/// * `sun_ra_sec` -- Right Ascension of Sun, seconds part
/// * `sun_dec_deg` -- Declination of Sun, degrees part
/// * `sun_dec_min` -- Declination of Sun, minutes part
/// * `sun_dec_sec` -- Declination of Sun, seconds part
pub fn approximate_position_of_sun(
lct_hours: f64,
lct_minutes: f64,
lct_seconds: f64,
local_day: f64,
local_month: u32,
local_year: u32,
is_daylight_saving: bool,
zone_correction: i32,
) -> (f64, f64, f64, f64, f64, f64) {
let daylight_saving = if is_daylight_saving == true { 1 } else { 0 };
let greenwich_date_day = pa_m::lct_gday(
lct_hours,
lct_minutes,
lct_seconds,
daylight_saving,
zone_correction,
local_day,
local_month,
local_year,
);
let greenwich_date_month = pa_m::lct_gmonth(
lct_hours,
lct_minutes,
lct_seconds,
daylight_saving,
zone_correction,
local_day,
local_month,
local_year,
);
let greenwich_date_year = pa_m::lct_gyear(
lct_hours,
lct_minutes,
lct_seconds,
daylight_saving,
zone_correction,
local_day,
local_month,
local_year,
);
let ut_hours = pa_m::lct_ut(
lct_hours,
lct_minutes,
lct_seconds,
daylight_saving,
zone_correction,
local_day,
local_month,
local_year,
);
let ut_days = ut_hours / 24.0;
let jd_days = pa_m::cd_jd(
greenwich_date_day,
greenwich_date_month,
greenwich_date_year,
) + ut_days;
let d_days = jd_days - pa_m::cd_jd(0 as f64, 1, 2010);
let n_deg = 360.0 * d_days / 365.242191;
let m_deg1 = n_deg + pa_m::sun_e_long(0 as f64, 1, 2010) - pa_m::sun_peri(0 as f64, 1, 2010);
let m_deg2 = m_deg1 - 360.0 * (m_deg1 / 360.0).floor();
let e_c_deg =
360.0 * pa_m::sun_ecc(0 as f64, 1, 2010) * m_deg2.to_radians().sin() / std::f64::consts::PI;
let l_s_deg1 = n_deg + e_c_deg + pa_m::sun_e_long(0 as f64, 1, 2010);
let l_s_deg2 = l_s_deg1 - 360.0 * (l_s_deg1 / 360.0).floor();
let ra_deg = pa_m::ec_ra(
l_s_deg2,
0 as f64,
0 as f64,
0 as f64,
0 as f64,
0 as f64,
greenwich_date_day,
greenwich_date_month,
greenwich_date_year,
);
let ra_hours = pa_m::dd_dh(ra_deg);
let dec_deg = pa_m::ec_dec(
l_s_deg2,
0 as f64,
0 as f64,
0 as f64,
0 as f64,
0 as f64,
greenwich_date_day,
greenwich_date_month,
greenwich_date_year,
);
let sun_ra_hour = pa_m::dh_hour(ra_hours);
let sun_ra_min = pa_m::dh_min(ra_hours);
let sun_ra_sec = pa_m::dh_sec(ra_hours);
let sun_dec_deg = pa_m::dd_deg(dec_deg);
let sun_dec_min = pa_m::dd_min(dec_deg);
let sun_dec_sec = pa_m::dd_sec(dec_deg);
return (
sun_ra_hour as f64,
sun_ra_min as f64,
sun_ra_sec,
sun_dec_deg,
sun_dec_min,
sun_dec_sec,
);
}
/// Calculate precise position of the sun for a local date and time.
///
/// ## Arguments
/// * `lct_hours` -- Local civil time, in hours.
/// * `lct_minutes` -- Local civil time, in minutes.
/// * `lct_seconds` -- Local civil time, in seconds.
/// * `local_day` -- Local date, day part.
/// * `local_month` -- Local date, month part.
/// * `local_year` -- Local date, year part.
/// * `is_daylight_saving` -- Is daylight savings in effect?
/// * `zone_correction` -- Time zone correction, in hours.
///
/// ## Returns
/// * `sun_ra_hour` -- Right Ascension of Sun, hour part
/// * `sun_ra_min` -- Right Ascension of Sun, minutes part
/// * `sun_ra_sec` -- Right Ascension of Sun, seconds part
/// * `sun_dec_deg` -- Declination of Sun, degrees part
/// * `sun_dec_min` -- Declination of Sun, minutes part
/// * `sun_dec_sec` -- Declination of Sun, seconds part
pub fn precise_position_of_sun(
lct_hours: f64,
lct_minutes: f64,
lct_seconds: f64,
local_day: f64,
local_month: u32,
local_year: u32,
is_daylight_saving: bool,
zone_correction: i32,
) -> (f64, f64, f64, f64, f64, f64) {
let daylight_saving = if is_daylight_saving == true { 1 } else { 0 };
let g_day = pa_m::lct_gday(
lct_hours,
lct_minutes,
lct_seconds,
daylight_saving,
zone_correction,
local_day,
local_month,
local_year,
);
let g_month = pa_m::lct_gmonth(
lct_hours,
lct_minutes,
lct_seconds,
daylight_saving,
zone_correction,
local_day,
local_month,
local_year,
);
let g_year = pa_m::lct_gyear(
lct_hours,
lct_minutes,
lct_seconds,
daylight_saving,
zone_correction,
local_day,
local_month,
local_year,
);
let sun_ecliptic_longitude_deg = pa_m::sun_long(
lct_hours,
lct_minutes,
lct_seconds,
daylight_saving,
zone_correction,
local_day,
local_month,
local_year,
);
let ra_deg = pa_m::ec_ra(
sun_ecliptic_longitude_deg,
0.0,
0.0,
0.0,
0.0,
0.0,
g_day,
g_month,
g_year,
);
let ra_hours = pa_m::dd_dh(ra_deg);
let dec_deg = pa_m::ec_dec(
sun_ecliptic_longitude_deg,
0.0,
0.0,
0.0,
0.0,
0.0,
g_day,
g_month,
g_year,
);
let sun_ra_hour = pa_m::dh_hour(ra_hours);
let sun_ra_min = pa_m::dh_min(ra_hours);
let sun_ra_sec = pa_m::dh_sec(ra_hours);
let sun_dec_deg = pa_m::dd_deg(dec_deg);
let sun_dec_min = pa_m::dd_min(dec_deg);
let sun_dec_sec = pa_m::dd_sec(dec_deg);
return (
sun_ra_hour as f64,
sun_ra_min as f64,
sun_ra_sec,
sun_dec_deg,
sun_dec_min,
sun_dec_sec,
);
}
/// Calculate distance to the Sun (in km), and angular size.
///
/// ## Arguments
/// * `lct_hours` -- Local civil time, in hours.
/// * `lct_minutes` -- Local civil time, in minutes.
/// * `lct_seconds` -- Local civil time, in seconds.
/// * `local_day` -- Local date, day part.
/// * `local_month` -- Local date, month part.
/// * `local_year` -- Local date, year part.
/// * `is_daylight_saving` -- Is daylight savings in effect?
/// * `zone_correction` -- Time zone correction, in hours.
///
/// ## Returns
/// * `sun_dist_km` -- Sun's distance, in kilometers
/// * `sun_ang_size_deg` -- Sun's angular size (degrees part)
/// * `sun_ang_size_min` -- Sun's angular size (minutes part)
/// * `sun_ang_size_sec` -- Sun's angular size (seconds part)
pub fn sun_distance_and_angular_size(
lct_hours: f64,
lct_minutes: f64,
lct_seconds: f64,
local_day: f64,
local_month: u32,
local_year: u32,
is_daylight_saving: bool,
zone_correction: i32,
) -> (f64, f64, f64, f64) {
let daylight_saving = if is_daylight_saving == true { 1 } else { 0 };
let g_day = pa_m::lct_gday(
lct_hours,
lct_minutes,
lct_seconds,
daylight_saving,
zone_correction,
local_day,
local_month,
local_year,
);
let g_month = pa_m::lct_gmonth(
lct_hours,
lct_minutes,
lct_seconds,
daylight_saving,
zone_correction,
local_day,
local_month,
local_year,
);
let g_year = pa_m::lct_gyear(
lct_hours,
lct_minutes,
lct_seconds,
daylight_saving,
zone_correction,
local_day,
local_month,
local_year,
);
let true_anomaly_deg = pa_m::sun_true_anomaly(
lct_hours,
lct_minutes,
lct_seconds,
daylight_saving,
zone_correction,
local_day,
local_month,
local_year,
);
let true_anomaly_rad = true_anomaly_deg.to_radians();
let eccentricity = pa_m::sun_ecc(g_day, g_month, g_year);
let f = (1.0 + eccentricity * true_anomaly_rad.cos()) / (1.0 - eccentricity * eccentricity);
let r_km = 149598500.0 / f;
let theta_deg = f * 0.533128;
let sun_dist_km = pa_u::round_f64(r_km, 0);
let sun_ang_size_deg = pa_m::dd_deg(theta_deg);
let sun_ang_size_min = pa_m::dd_min(theta_deg);
let sun_ang_size_sec = pa_m::dd_sec(theta_deg);
return (
sun_dist_km,
sun_ang_size_deg,
sun_ang_size_min,
sun_ang_size_sec,
);
}
/// Calculate local sunrise and sunset.
///
/// ## Arguments
/// * local_day -- Local date, day part.
/// * local_month -- Local date, month part.
/// * local_year -- Local date, year part.
/// * is_daylight_saving -- Is daylight savings in effect?
/// * zone_correction -- Time zone correction, in hours.
/// * geographical_long_deg -- Geographical longitude, in degrees.
/// * geographical_lat_deg -- Geographical latitude, in degrees.
///
/// ## Returns
/// * local_sunrise_hour -- Local sunrise, hour part
/// * local_sunrise_minute -- Local sunrise, minutes part
/// * local_sunset_hour -- Local sunset, hour part
/// * local_sunset_minute -- Local sunset, minutes part
/// * azimuth_of_sunrise_deg -- Azimuth (horizon direction) of sunrise, in degrees
/// * azimuth_of_sunset_deg -- Azimuth (horizon direction) of sunset, in degrees
/// * status -- Calculation status
pub fn sunrise_and_sunset(
local_day: f64,
local_month: u32,
local_year: u32,
is_daylight_saving: bool,
zone_correction: i32,
geographical_long_deg: f64,
geographical_lat_deg: f64,
) -> (f64, f64, f64, f64, f64, f64, String) {
let daylight_saving = if is_daylight_saving == true { 1 } else { 0 };
let local_sunrise_hours = pa_m::sunrise_lct(
local_day,
local_month,
local_year,
daylight_saving,
zone_correction,
geographical_long_deg,
geographical_lat_deg,
);
let local_sunset_hours = pa_m::sunset_lct(
local_day,
local_month,
local_year,
daylight_saving,
zone_correction,
geographical_long_deg,
geographical_lat_deg,
);
let sun_rise_set_status = pa_m::e_sun_rs(
local_day,
local_month,
local_year,
daylight_saving,
zone_correction,
geographical_long_deg,
geographical_lat_deg,
);
let adjusted_sunrise_hours = local_sunrise_hours + 0.008333;
let adjusted_sunset_hours = local_sunset_hours + 0.008333;
let azimuth_of_sunrise_deg1 = pa_m::sunrise_az(
local_day,
local_month,
local_year,
daylight_saving,
zone_correction,
geographical_long_deg,
geographical_lat_deg,
);
let azimuth_of_sunset_deg1 = pa_m::sunset_az(
local_day,
local_month,
local_year,
daylight_saving,
zone_correction,
geographical_long_deg,
geographical_lat_deg,
);
let local_sunrise_hour = if sun_rise_set_status == "OK" {
pa_m::dh_hour(adjusted_sunrise_hours) as f64
} else {
0.0
};
let local_sunrise_minute = if sun_rise_set_status == "OK" {
pa_m::dh_min(adjusted_sunrise_hours) as f64
} else {
0.0
};
let local_sunset_hour = if sun_rise_set_status == "OK" {
pa_m::dh_hour(adjusted_sunset_hours) as f64
} else {
0.0
};
let local_sunset_minute = if sun_rise_set_status == "OK" {
pa_m::dh_min(adjusted_sunset_hours) as f64
} else {
0.0
};
let azimuth_of_sunrise_deg = if sun_rise_set_status == "OK" {
pa_u::round_f64(azimuth_of_sunrise_deg1, 2)
} else {
0.0
};
let azimuth_of_sunset_deg = if sun_rise_set_status == "OK" {
pa_u::round_f64(azimuth_of_sunset_deg1, 2)
} else {
0.0
};
let status = sun_rise_set_status.to_string();
return (
local_sunrise_hour,
local_sunrise_minute,
local_sunset_hour,
local_sunset_minute,
azimuth_of_sunrise_deg,
azimuth_of_sunset_deg,
status,
);
}
/// Calculate times of morning and evening twilight.
///
/// ## Arguments
/// * `local_day` -- Local date, day part.
/// * `local_month` -- Local date, month part.
/// * `local_year` -- Local date, year part.
/// * `is_daylight_saving` -- Is daylight savings in effect?
/// * `zone_correction` -- Time zone correction, in hours.
/// * `geographical_long_deg` -- Geographical longitude, in degrees.
/// * `geographical_lat_deg` -- Geographical latitude, in degrees.
/// * `twilight_type` -- "C" (civil), "N" (nautical), or "A" (astronomical).
///
/// ## Returns
/// * `am_twilight_begins_hour` -- Beginning of AM twilight (hour part)
/// * `am_twilight_begins_min` -- Beginning of AM twilight (minutes part)
/// * `pm_twilight_ends_hour` -- Ending of PM twilight (hour part)
/// * `pm_twilight_ends_min` -- Ending of PM twilight (minutes part)
/// * `status` -- Calculation status
pub fn morning_and_evening_twilight(
local_day: f64,
local_month: u32,
local_year: u32,
is_daylight_saving: bool,
zone_correction: i32,
geographical_long_deg: f64,
geographical_lat_deg: f64,
twilight_type: pa_t::TwilightType,
) -> (f64, f64, f64, f64, String) {
let daylight_saving = if is_daylight_saving == true { 1 } else { 0 };
let start_of_am_twilight_hours = pa_m::twilight_am_lct(
local_day,
local_month,
local_year,
daylight_saving,
zone_correction,
geographical_long_deg,
geographical_lat_deg,
&twilight_type,
);
let end_of_pm_twilight_hours = pa_m::twilight_pm_lct(
local_day,
local_month,
local_year,
daylight_saving,
zone_correction,
geographical_long_deg,
geographical_lat_deg,
&twilight_type,
);
let twilight_status = pa_m::e_twilight(
local_day,
local_month,
local_year,
daylight_saving,
zone_correction,
geographical_long_deg,
geographical_lat_deg,
&twilight_type,
);
let adjusted_am_start_time = start_of_am_twilight_hours + 0.008333;
let adjusted_pm_start_time = end_of_pm_twilight_hours + 0.008333;
let am_twilight_begins_hour = if twilight_status == "OK" {
pa_m::dh_hour(adjusted_am_start_time) as f64
} else {
-99.0
};
let am_twilight_begins_min = if twilight_status == "OK" {
pa_m::dh_min(adjusted_am_start_time) as f64
} else {
-99.0
};
let pm_twilight_ends_hour = if twilight_status == "OK" {
pa_m::dh_hour(adjusted_pm_start_time) as f64
} else {
-99.0
};
let pm_twilight_ends_min = if twilight_status == "OK" {
pa_m::dh_min(adjusted_pm_start_time) as f64
} else {
-99.0
};
let status = twilight_status;
return (
am_twilight_begins_hour,
am_twilight_begins_min,
pm_twilight_ends_hour,
pm_twilight_ends_min,
status,
);
}
/// Calculate the equation of time. (The difference between the real Sun time and the mean Sun time.)
///
/// ## Arguments
/// * `gwdate_day` -- Greenwich date (day part)
/// * `gwdate_month` -- Greenwich date (month part)
/// * `gwdate_year` -- Greenwich date (year part)
///
/// ## Returns
/// * `equation_of_time_min` -- equation of time (minute part)
/// * `equation_of_time_sec` -- equation of time (seconds part)
pub fn equation_of_time(gwdate_day: f64, gwdate_month: u32, gwdate_year: u32) -> (f64, f64) {
let sun_longitude_deg =
pa_m::sun_long(12.0, 0.0, 0.0, 0, 0, gwdate_day, gwdate_month, gwdate_year);
let sun_ra_hours = pa_m::dd_dh(pa_m::ec_ra(
sun_longitude_deg,
0.0,
0.0,
0.0,
0.0,
0.0,
gwdate_day,
gwdate_month,
gwdate_year,
));
let equivalent_ut_hours = pa_m::gst_ut(
sun_ra_hours,
0.0,
0.0,
gwdate_day,
gwdate_month,
gwdate_year,
);
let equation_of_time_hours = equivalent_ut_hours - 12.0;
let equation_of_time_min = pa_m::dh_min(equation_of_time_hours) as f64;
let equation_of_time_sec = pa_m::dh_sec(equation_of_time_hours);
return (equation_of_time_min, equation_of_time_sec);
}
/// Calculate solar elongation for a celestial body.
///
/// Solar elongation is the angle between the lines of sight from the Earth to the Sun and from the Earth to the celestial body.
///
/// ## Arguments
/// * `ra_hour` -- Right Ascension, hour part
/// * `ra_min` -- Right Ascension, minutes part
/// * `ra_sec` -- Right Ascension, seconds part
/// * `dec_deg` -- Declination, degrees part
/// * `dec_min` -- Declination, minutes part
/// * `dec_sec` -- Declination, seconds part
/// * `gwdate_day` -- Greenwich Date, day part
/// * `gwdate_month` -- Greenwich Date, month part
/// * `gwdate_year` -- Greenwich Date, year part
///
/// ## Returns
/// * `solar_elongation_deg` -- Solar elongation, in degrees
pub fn solar_elongation(
ra_hour: f64,
ra_min: f64,
ra_sec: f64,
dec_deg: f64,
dec_min: f64,
dec_sec: f64,
gwdate_day: f64,
gwdate_month: u32,
gwdate_year: u32,
) -> f64 {
let sun_longitude_deg =
pa_m::sun_long(0.0, 0.0, 0.0, 0, 0, gwdate_day, gwdate_month, gwdate_year);
let sun_ra_hours = pa_m::dd_dh(pa_m::ec_ra(
sun_longitude_deg,
0.0,
0.0,
0.0,
0.0,
0.0,
gwdate_day,
gwdate_month,
gwdate_year,
));
let sun_dec_deg = pa_m::ec_dec(
sun_longitude_deg,
0.0,
0.0,
0.0,
0.0,
0.0,
gwdate_day,
gwdate_month,
gwdate_year,
);
let solar_elongation_deg = pa_m::angle(
sun_ra_hours,
0.0,
0.0,
sun_dec_deg,
0.0,
0.0,
ra_hour,
ra_min,
ra_sec,
dec_deg,
dec_min,
dec_sec,
pa_t::AngleMeasure::Hours,
);
return pa_u::round_f64(solar_elongation_deg, 2);
}