1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
use crate::macros as pa_m;
use crate::types as pa_t;
use crate::util as pa_u;

/// Calculate approximate position of the sun for a local date and time.
///
/// ## Arguments
/// * `lct_hours` -- Local civil time, in hours.
/// * `lct_minutes` -- Local civil time, in minutes.
/// * `lct_seconds` -- Local civil time, in seconds.
/// * `local_day` -- Local date, day part.
/// * `local_month` -- Local date, month part.
/// * `local_year` -- Local date, year part.
/// * `is_daylight_saving` -- Is daylight savings in effect?
/// * `zone_correction` -- Time zone correction, in hours.
///
/// ## Returns
/// * `sun_ra_hour` -- Right Ascension of Sun, hour part
/// * `sun_ra_min` -- Right Ascension of Sun, minutes part
/// * `sun_ra_sec` -- Right Ascension of Sun, seconds part
/// * `sun_dec_deg` -- Declination of Sun, degrees part
/// * `sun_dec_min` -- Declination of Sun, minutes part
/// * `sun_dec_sec` -- Declination of Sun, seconds part
pub fn approximate_position_of_sun(
    lct_hours: f64,
    lct_minutes: f64,
    lct_seconds: f64,
    local_day: f64,
    local_month: u32,
    local_year: u32,
    is_daylight_saving: bool,
    zone_correction: i32,
) -> (f64, f64, f64, f64, f64, f64) {
    let daylight_saving = if is_daylight_saving == true { 1 } else { 0 };

    let greenwich_date_day = pa_m::lct_gday(
        lct_hours,
        lct_minutes,
        lct_seconds,
        daylight_saving,
        zone_correction,
        local_day,
        local_month,
        local_year,
    );
    let greenwich_date_month = pa_m::lct_gmonth(
        lct_hours,
        lct_minutes,
        lct_seconds,
        daylight_saving,
        zone_correction,
        local_day,
        local_month,
        local_year,
    );
    let greenwich_date_year = pa_m::lct_gyear(
        lct_hours,
        lct_minutes,
        lct_seconds,
        daylight_saving,
        zone_correction,
        local_day,
        local_month,
        local_year,
    );
    let ut_hours = pa_m::lct_ut(
        lct_hours,
        lct_minutes,
        lct_seconds,
        daylight_saving,
        zone_correction,
        local_day,
        local_month,
        local_year,
    );
    let ut_days = ut_hours / 24.0;
    let jd_days = pa_m::cd_jd(
        greenwich_date_day,
        greenwich_date_month,
        greenwich_date_year,
    ) + ut_days;
    let d_days = jd_days - pa_m::cd_jd(0 as f64, 1, 2010);
    let n_deg = 360.0 * d_days / 365.242191;
    let m_deg1 = n_deg + pa_m::sun_e_long(0 as f64, 1, 2010) - pa_m::sun_peri(0 as f64, 1, 2010);
    let m_deg2 = m_deg1 - 360.0 * (m_deg1 / 360.0).floor();
    let e_c_deg =
        360.0 * pa_m::sun_ecc(0 as f64, 1, 2010) * m_deg2.to_radians().sin() / std::f64::consts::PI;
    let l_s_deg1 = n_deg + e_c_deg + pa_m::sun_e_long(0 as f64, 1, 2010);
    let l_s_deg2 = l_s_deg1 - 360.0 * (l_s_deg1 / 360.0).floor();
    let ra_deg = pa_m::ec_ra(
        l_s_deg2,
        0 as f64,
        0 as f64,
        0 as f64,
        0 as f64,
        0 as f64,
        greenwich_date_day,
        greenwich_date_month,
        greenwich_date_year,
    );
    let ra_hours = pa_m::dd_dh(ra_deg);
    let dec_deg = pa_m::ec_dec(
        l_s_deg2,
        0 as f64,
        0 as f64,
        0 as f64,
        0 as f64,
        0 as f64,
        greenwich_date_day,
        greenwich_date_month,
        greenwich_date_year,
    );

    let sun_ra_hour = pa_m::dh_hour(ra_hours);
    let sun_ra_min = pa_m::dh_min(ra_hours);
    let sun_ra_sec = pa_m::dh_sec(ra_hours);
    let sun_dec_deg = pa_m::dd_deg(dec_deg);
    let sun_dec_min = pa_m::dd_min(dec_deg);
    let sun_dec_sec = pa_m::dd_sec(dec_deg);

    return (
        sun_ra_hour as f64,
        sun_ra_min as f64,
        sun_ra_sec,
        sun_dec_deg,
        sun_dec_min,
        sun_dec_sec,
    );
}

/// Calculate precise position of the sun for a local date and time.
///
/// ## Arguments
/// * `lct_hours` -- Local civil time, in hours.
/// * `lct_minutes` -- Local civil time, in minutes.
/// * `lct_seconds` -- Local civil time, in seconds.
/// * `local_day` -- Local date, day part.
/// * `local_month` -- Local date, month part.
/// * `local_year` -- Local date, year part.
/// * `is_daylight_saving` -- Is daylight savings in effect?
/// * `zone_correction` -- Time zone correction, in hours.
///
/// ## Returns
/// * `sun_ra_hour` -- Right Ascension of Sun, hour part
/// * `sun_ra_min` -- Right Ascension of Sun, minutes part
/// * `sun_ra_sec` -- Right Ascension of Sun, seconds part
/// * `sun_dec_deg` -- Declination of Sun, degrees part
/// * `sun_dec_min` -- Declination of Sun, minutes part
/// * `sun_dec_sec` -- Declination of Sun, seconds part
pub fn precise_position_of_sun(
    lct_hours: f64,
    lct_minutes: f64,
    lct_seconds: f64,
    local_day: f64,
    local_month: u32,
    local_year: u32,
    is_daylight_saving: bool,
    zone_correction: i32,
) -> (f64, f64, f64, f64, f64, f64) {
    let daylight_saving = if is_daylight_saving == true { 1 } else { 0 };

    let g_day = pa_m::lct_gday(
        lct_hours,
        lct_minutes,
        lct_seconds,
        daylight_saving,
        zone_correction,
        local_day,
        local_month,
        local_year,
    );
    let g_month = pa_m::lct_gmonth(
        lct_hours,
        lct_minutes,
        lct_seconds,
        daylight_saving,
        zone_correction,
        local_day,
        local_month,
        local_year,
    );
    let g_year = pa_m::lct_gyear(
        lct_hours,
        lct_minutes,
        lct_seconds,
        daylight_saving,
        zone_correction,
        local_day,
        local_month,
        local_year,
    );
    let sun_ecliptic_longitude_deg = pa_m::sun_long(
        lct_hours,
        lct_minutes,
        lct_seconds,
        daylight_saving,
        zone_correction,
        local_day,
        local_month,
        local_year,
    );
    let ra_deg = pa_m::ec_ra(
        sun_ecliptic_longitude_deg,
        0.0,
        0.0,
        0.0,
        0.0,
        0.0,
        g_day,
        g_month,
        g_year,
    );
    let ra_hours = pa_m::dd_dh(ra_deg);
    let dec_deg = pa_m::ec_dec(
        sun_ecliptic_longitude_deg,
        0.0,
        0.0,
        0.0,
        0.0,
        0.0,
        g_day,
        g_month,
        g_year,
    );

    let sun_ra_hour = pa_m::dh_hour(ra_hours);
    let sun_ra_min = pa_m::dh_min(ra_hours);
    let sun_ra_sec = pa_m::dh_sec(ra_hours);
    let sun_dec_deg = pa_m::dd_deg(dec_deg);
    let sun_dec_min = pa_m::dd_min(dec_deg);
    let sun_dec_sec = pa_m::dd_sec(dec_deg);

    return (
        sun_ra_hour as f64,
        sun_ra_min as f64,
        sun_ra_sec,
        sun_dec_deg,
        sun_dec_min,
        sun_dec_sec,
    );
}

/// Calculate distance to the Sun (in km), and angular size.
///
/// ## Arguments
/// * `lct_hours` -- Local civil time, in hours.
/// * `lct_minutes` -- Local civil time, in minutes.
/// * `lct_seconds` -- Local civil time, in seconds.
/// * `local_day` -- Local date, day part.
/// * `local_month` -- Local date, month part.
/// * `local_year` -- Local date, year part.
/// * `is_daylight_saving` -- Is daylight savings in effect?
/// * `zone_correction` -- Time zone correction, in hours.
///
/// ## Returns
/// * `sun_dist_km` -- Sun's distance, in kilometers
/// * `sun_ang_size_deg` -- Sun's angular size (degrees part)
/// * `sun_ang_size_min` -- Sun's angular size (minutes part)
/// * `sun_ang_size_sec` -- Sun's angular size (seconds part)
pub fn sun_distance_and_angular_size(
    lct_hours: f64,
    lct_minutes: f64,
    lct_seconds: f64,
    local_day: f64,
    local_month: u32,
    local_year: u32,
    is_daylight_saving: bool,
    zone_correction: i32,
) -> (f64, f64, f64, f64) {
    let daylight_saving = if is_daylight_saving == true { 1 } else { 0 };

    let g_day = pa_m::lct_gday(
        lct_hours,
        lct_minutes,
        lct_seconds,
        daylight_saving,
        zone_correction,
        local_day,
        local_month,
        local_year,
    );
    let g_month = pa_m::lct_gmonth(
        lct_hours,
        lct_minutes,
        lct_seconds,
        daylight_saving,
        zone_correction,
        local_day,
        local_month,
        local_year,
    );
    let g_year = pa_m::lct_gyear(
        lct_hours,
        lct_minutes,
        lct_seconds,
        daylight_saving,
        zone_correction,
        local_day,
        local_month,
        local_year,
    );
    let true_anomaly_deg = pa_m::sun_true_anomaly(
        lct_hours,
        lct_minutes,
        lct_seconds,
        daylight_saving,
        zone_correction,
        local_day,
        local_month,
        local_year,
    );
    let true_anomaly_rad = true_anomaly_deg.to_radians();
    let eccentricity = pa_m::sun_ecc(g_day, g_month, g_year);
    let f = (1.0 + eccentricity * true_anomaly_rad.cos()) / (1.0 - eccentricity * eccentricity);
    let r_km = 149598500.0 / f;
    let theta_deg = f * 0.533128;

    let sun_dist_km = pa_u::round_f64(r_km, 0);
    let sun_ang_size_deg = pa_m::dd_deg(theta_deg);
    let sun_ang_size_min = pa_m::dd_min(theta_deg);
    let sun_ang_size_sec = pa_m::dd_sec(theta_deg);

    return (
        sun_dist_km,
        sun_ang_size_deg,
        sun_ang_size_min,
        sun_ang_size_sec,
    );
}

/// Calculate local sunrise and sunset.
///
/// ## Arguments
/// * local_day -- Local date, day part.
/// * local_month -- Local date, month part.
/// * local_year -- Local date, year part.
/// * is_daylight_saving -- Is daylight savings in effect?
/// * zone_correction -- Time zone correction, in hours.
/// * geographical_long_deg -- Geographical longitude, in degrees.
/// * geographical_lat_deg -- Geographical latitude, in degrees.
///
/// ## Returns
/// * local_sunrise_hour -- Local sunrise, hour part
/// * local_sunrise_minute -- Local sunrise, minutes part
/// * local_sunset_hour -- Local sunset, hour part
/// * local_sunset_minute -- Local sunset, minutes part
/// * azimuth_of_sunrise_deg -- Azimuth (horizon direction) of sunrise, in degrees
/// * azimuth_of_sunset_deg -- Azimuth (horizon direction) of sunset, in degrees
/// * status -- Calculation status
pub fn sunrise_and_sunset(
    local_day: f64,
    local_month: u32,
    local_year: u32,
    is_daylight_saving: bool,
    zone_correction: i32,
    geographical_long_deg: f64,
    geographical_lat_deg: f64,
) -> (f64, f64, f64, f64, f64, f64, String) {
    let daylight_saving = if is_daylight_saving == true { 1 } else { 0 };

    let local_sunrise_hours = pa_m::sunrise_lct(
        local_day,
        local_month,
        local_year,
        daylight_saving,
        zone_correction,
        geographical_long_deg,
        geographical_lat_deg,
    );

    let local_sunset_hours = pa_m::sunset_lct(
        local_day,
        local_month,
        local_year,
        daylight_saving,
        zone_correction,
        geographical_long_deg,
        geographical_lat_deg,
    );

    let sun_rise_set_status = pa_m::e_sun_rs(
        local_day,
        local_month,
        local_year,
        daylight_saving,
        zone_correction,
        geographical_long_deg,
        geographical_lat_deg,
    );

    let adjusted_sunrise_hours = local_sunrise_hours + 0.008333;
    let adjusted_sunset_hours = local_sunset_hours + 0.008333;
    let azimuth_of_sunrise_deg1 = pa_m::sunrise_az(
        local_day,
        local_month,
        local_year,
        daylight_saving,
        zone_correction,
        geographical_long_deg,
        geographical_lat_deg,
    );
    let azimuth_of_sunset_deg1 = pa_m::sunset_az(
        local_day,
        local_month,
        local_year,
        daylight_saving,
        zone_correction,
        geographical_long_deg,
        geographical_lat_deg,
    );

    let local_sunrise_hour = if sun_rise_set_status == "OK" {
        pa_m::dh_hour(adjusted_sunrise_hours) as f64
    } else {
        0.0
    };
    let local_sunrise_minute = if sun_rise_set_status == "OK" {
        pa_m::dh_min(adjusted_sunrise_hours) as f64
    } else {
        0.0
    };
    let local_sunset_hour = if sun_rise_set_status == "OK" {
        pa_m::dh_hour(adjusted_sunset_hours) as f64
    } else {
        0.0
    };
    let local_sunset_minute = if sun_rise_set_status == "OK" {
        pa_m::dh_min(adjusted_sunset_hours) as f64
    } else {
        0.0
    };
    let azimuth_of_sunrise_deg = if sun_rise_set_status == "OK" {
        pa_u::round_f64(azimuth_of_sunrise_deg1, 2)
    } else {
        0.0
    };
    let azimuth_of_sunset_deg = if sun_rise_set_status == "OK" {
        pa_u::round_f64(azimuth_of_sunset_deg1, 2)
    } else {
        0.0
    };
    let status = sun_rise_set_status.to_string();

    return (
        local_sunrise_hour,
        local_sunrise_minute,
        local_sunset_hour,
        local_sunset_minute,
        azimuth_of_sunrise_deg,
        azimuth_of_sunset_deg,
        status,
    );
}

/// Calculate times of morning and evening twilight.
///
/// ## Arguments
/// * `local_day` -- Local date, day part.
/// * `local_month` -- Local date, month part.
/// * `local_year` -- Local date, year part.
/// * `is_daylight_saving` -- Is daylight savings in effect?
/// * `zone_correction` -- Time zone correction, in hours.
/// * `geographical_long_deg` -- Geographical longitude, in degrees.
/// * `geographical_lat_deg` -- Geographical latitude, in degrees.
/// * `twilight_type` -- "C" (civil), "N" (nautical), or "A" (astronomical).
///
/// ## Returns
/// * `am_twilight_begins_hour` -- Beginning of AM twilight (hour part)
/// * `am_twilight_begins_min` -- Beginning of AM twilight (minutes part)
/// * `pm_twilight_ends_hour` -- Ending of PM twilight (hour part)
/// * `pm_twilight_ends_min` -- Ending of PM twilight (minutes part)
/// * `status` -- Calculation status
pub fn morning_and_evening_twilight(
    local_day: f64,
    local_month: u32,
    local_year: u32,
    is_daylight_saving: bool,
    zone_correction: i32,
    geographical_long_deg: f64,
    geographical_lat_deg: f64,
    twilight_type: pa_t::TwilightType,
) -> (f64, f64, f64, f64, String) {
    let daylight_saving = if is_daylight_saving == true { 1 } else { 0 };

    let start_of_am_twilight_hours = pa_m::twilight_am_lct(
        local_day,
        local_month,
        local_year,
        daylight_saving,
        zone_correction,
        geographical_long_deg,
        geographical_lat_deg,
        &twilight_type,
    );

    let end_of_pm_twilight_hours = pa_m::twilight_pm_lct(
        local_day,
        local_month,
        local_year,
        daylight_saving,
        zone_correction,
        geographical_long_deg,
        geographical_lat_deg,
        &twilight_type,
    );

    let twilight_status = pa_m::e_twilight(
        local_day,
        local_month,
        local_year,
        daylight_saving,
        zone_correction,
        geographical_long_deg,
        geographical_lat_deg,
        &twilight_type,
    );

    let adjusted_am_start_time = start_of_am_twilight_hours + 0.008333;
    let adjusted_pm_start_time = end_of_pm_twilight_hours + 0.008333;

    let am_twilight_begins_hour = if twilight_status == "OK" {
        pa_m::dh_hour(adjusted_am_start_time) as f64
    } else {
        -99.0
    };
    let am_twilight_begins_min = if twilight_status == "OK" {
        pa_m::dh_min(adjusted_am_start_time) as f64
    } else {
        -99.0
    };
    let pm_twilight_ends_hour = if twilight_status == "OK" {
        pa_m::dh_hour(adjusted_pm_start_time) as f64
    } else {
        -99.0
    };
    let pm_twilight_ends_min = if twilight_status == "OK" {
        pa_m::dh_min(adjusted_pm_start_time) as f64
    } else {
        -99.0
    };
    let status = twilight_status;

    return (
        am_twilight_begins_hour,
        am_twilight_begins_min,
        pm_twilight_ends_hour,
        pm_twilight_ends_min,
        status,
    );
}

/// Calculate the equation of time. (The difference between the real Sun time and the mean Sun time.)
///
/// ## Arguments
/// * `gwdate_day` -- Greenwich date (day part)
/// * `gwdate_month` -- Greenwich date (month part)
/// * `gwdate_year` -- Greenwich date (year part)
///
/// ## Returns
/// * `equation_of_time_min` -- equation of time (minute part)
/// * `equation_of_time_sec` -- equation of time (seconds part)
pub fn equation_of_time(gwdate_day: f64, gwdate_month: u32, gwdate_year: u32) -> (f64, f64) {
    let sun_longitude_deg =
        pa_m::sun_long(12.0, 0.0, 0.0, 0, 0, gwdate_day, gwdate_month, gwdate_year);
    let sun_ra_hours = pa_m::dd_dh(pa_m::ec_ra(
        sun_longitude_deg,
        0.0,
        0.0,
        0.0,
        0.0,
        0.0,
        gwdate_day,
        gwdate_month,
        gwdate_year,
    ));
    let equivalent_ut_hours = pa_m::gst_ut(
        sun_ra_hours,
        0.0,
        0.0,
        gwdate_day,
        gwdate_month,
        gwdate_year,
    );
    let equation_of_time_hours = equivalent_ut_hours - 12.0;

    let equation_of_time_min = pa_m::dh_min(equation_of_time_hours) as f64;
    let equation_of_time_sec = pa_m::dh_sec(equation_of_time_hours);

    return (equation_of_time_min, equation_of_time_sec);
}

/// Calculate solar elongation for a celestial body.
///
/// Solar elongation is the angle between the lines of sight from the Earth to the Sun and from the Earth to the celestial body.
///
/// ## Arguments
/// * `ra_hour` -- Right Ascension, hour part
/// * `ra_min` -- Right Ascension, minutes part
/// * `ra_sec` -- Right Ascension, seconds part
/// * `dec_deg` -- Declination, degrees part
/// * `dec_min` -- Declination, minutes part
/// * `dec_sec` -- Declination, seconds part
/// * `gwdate_day` -- Greenwich Date, day part
/// * `gwdate_month` -- Greenwich Date, month part
/// * `gwdate_year` -- Greenwich Date, year part
///
/// ## Returns
/// * `solar_elongation_deg` -- Solar elongation, in degrees
pub fn solar_elongation(
    ra_hour: f64,
    ra_min: f64,
    ra_sec: f64,
    dec_deg: f64,
    dec_min: f64,
    dec_sec: f64,
    gwdate_day: f64,
    gwdate_month: u32,
    gwdate_year: u32,
) -> f64 {
    let sun_longitude_deg =
        pa_m::sun_long(0.0, 0.0, 0.0, 0, 0, gwdate_day, gwdate_month, gwdate_year);
    let sun_ra_hours = pa_m::dd_dh(pa_m::ec_ra(
        sun_longitude_deg,
        0.0,
        0.0,
        0.0,
        0.0,
        0.0,
        gwdate_day,
        gwdate_month,
        gwdate_year,
    ));
    let sun_dec_deg = pa_m::ec_dec(
        sun_longitude_deg,
        0.0,
        0.0,
        0.0,
        0.0,
        0.0,
        gwdate_day,
        gwdate_month,
        gwdate_year,
    );
    let solar_elongation_deg = pa_m::angle(
        sun_ra_hours,
        0.0,
        0.0,
        sun_dec_deg,
        0.0,
        0.0,
        ra_hour,
        ra_min,
        ra_sec,
        dec_deg,
        dec_min,
        dec_sec,
        pa_t::AngleMeasure::Hours,
    );

    return pa_u::round_f64(solar_elongation_deg, 2);
}